
 

 

Exercise [16.18] 

In the text, Penrose states: 

 

“Now it follows immediately from Turing’s argument above that the family of true Π1-sentences 
constitutes a non-recursively enumerable set” 

 

In my opinion, given the actual description of Turing's argument presented in the preceding text, this 
rather stretches the meaning of the word “immediately”! 

 

Accordingly, part 1 of my solution to this problem is to show in detail how the Turing argument given 
in the text can be used to “immediately” (!) show that true Π1-sentences are not r.e. (recursively 
enumerable). 

Part 2 of my solution is to adapt the part 1 proof  to find a particular Π1-sentence G(F), that must be 
true if a given formal proof system F is trustworthy, but that nevertheless can't be proved using F. 

As an addendum, I provide a much more direct route to the final proof, that also utilizes a 
Turing/Cantor style argument, but a different one from that given in the text. 

 

 

Part 1: 

The goal of this part is to show that true Π1-sentences are not r.e. (recursively enumerable) by any 
formal proof system F.  I'll do this in two stages.  Part (1a) will demonstrate that non-terminating 
Turing machine computations are not r.e..  Then in part (1b) I'll explain the relationship between 
Turing machine computations and Π1-sentences, and use this relationship to complete the part (1) 
goal. 

 

 

Part 1a:  Proof that non-terminating Turing machine computations are not r.e. 

The text discusses using Cantor's diagonal slash to prove that a particular subset of effective Turing 
machines (the ones that output only either 0 or 1) are not r.e., but it doesn't go into detail.  So here 
are the details: 

 



 

 

For convenience, let’s call a Turing machine whose output is restricted to only 0 and 1 a 
“membership machine” (since each such machine defines the membership of a particular subset of ℕ). 

 

Let us ASSUME that the set of effective membership machines is r.e. - i.e. that there is an effective 
Turing machine MEff that lists every effective membership machine (in no particular order, and 
perhaps with duplicates).  We can state this more formally:  ∀n∊ℕ, TMEff(n) is an effective membership 
machine, and for every effective membership machine M, there is at least one n such that 
M = TMEff(n).  But now consider the particular membership machine defined as follows: 

 

M(x) = TMEff(x)(x) + 1  (mod 2) 

 

It's clearly possible to construct a Turing machine that performs the calculation on the RHS (it would 
involve computing MEff(x), then using the universal Turing machine U to compute 
TMEff(x)(x) = U(MEff(x), x).  Since all the elements involved in calculating the RHS are effective (i.e. all 
the computations are guaranteed to halt and produce a result), M is clearly also an effective 
membership machine.  But by construction it differs from every TMEff(n).  Therefore, it is not part of 
the list enumerated by MEff.  This contradicts the assumption that MEff recursively enumerates 
every effective membership machine.  So effective membership machines are not r.e..  Since 
effective membership machines are just a subset of effective Turing machines, this means that 
effective Turing machines are not r.e. either.  ∎ 

 

(Actually, the last sentence only follows if it's a computable matter to distinguish between Turing 
machines that are or are not membership machines.  It is iff we consider only those Turing machines 
who's algorithm explicitly outputs only either a zero or a one as a membership machine.  But in any 
case, the argument above, although phrased so as to apply to the recursive enumeration of effective 
membership machines, in fact works just fine if we apply it to the recursive enumeration of effective 
Turing machines generally.  That approach gives us a more direct proof that effective Turing 
machines are not r.e.; it just doesn't happen to be how it was done in the text). 

 

So, we've established that the set of effective Turing machines is not r.e..  What does this tell us 
about the complement of that set, i.e. the set of faulty Turing machines?  Or about the set of 
non-terminating Turing machine computations?  At first glance, it would seem that the answer might 
be “not much”.  Knowing that some set S is not r.e. doesn't (in general) tell us whether or not its 
complement is or is not r.e..  However it turns out that we can show that if non-terminating Turing 
machine computations were r.e., then this would imply that effective Turing machines were also r.e..  
And since we've just shown that the latter isn't true, the former can’t be either.  It remains, then, to 
demonstrate this implication. 



 

 

I'll do this formally by constructing a series of Turing machines with particular properties, given here 
as pseudo-code algorithms, culminating in one that recursively enumerates all effective Turing 
machines.  To make this rather cumbersome set of constructions easier to follow, a brief summary of 
the overall plan might be helpful before I get into the details: 

 

Basically the idea is that if you could list all the non-terminating computations, you could determine 
for sure whether any computation will stop or not:  Just run the computation and at the same time 
step through the list.  Either the computation will terminate, or it'll be in the list - and therefore 
within in a finite time you'll know if it terminates or not.  So now consider the following operation:  
For a given (validly coded) Turing machine T, consider its action on each natural number 0, 1, 2,... in 
turn, testing to see if each computation terminates, until you find one that doesn't.  This operation is 
itself a computation, and it terminates iff T is faulty.  So by testing whether this computation 
terminates, you can determine for sure within a finite time whether an arbitrary Turing machine is 
effective or not.  To recursively list all effective Turing machines then, you could first list ALL Turing 
machines, and then just replace all the faulty ones in the list (which you can now detect) with some 
particular effective one. 

 

That's the summary.  The details are as follows: 

 

 

Let us ASSUME that the set of non-terminating Turing machine computations is r.e. - i.e. that there is 
some effective Turing machine TCNTlist that lists every non-terminating Turing machine 
computation.  More formally, for ∀n∊ℕ, TCNTlist(n) successfully outputs an ordered pair (t,x) such 
that the computation Tt(x) never halts; and for every possible non-halting computation, there is at 
least one n such that TCNTlist outputs the (t,x) pair corresponding to that particular computation. 

(Note Penrose's comments on p375 about encoding/decoding pairs of numbers as a single number - 
they apply equally well to the outputs of Turing machines as well as their inputs; also we can in fact 
encode larger n-tuples of numbers and not just pairs, a fact which we will make use of later). 

 

Now, given TCNTlist, we can define the following series of Turing machines: 

  



 

 

TCNT takes arguments (t,x) and outputs a 1 if the computation Tt(x) never halts; if it DOES halt, TCNT 
will not.  Note that TCNT works by simply attempting to recursively enumerate all non-terminating 
computations until it finds the one that matches its argument.  Note that the argument ‘t’ is always 
assumed to represent (encode) a validly coded Turing machine, for this and all the following Turing 
machines; except for the last one, TEffList, they don't include any logic to handle the case when the 
argument representing a Turing machine does not represent a syntactically valid (correctly coded) 
one.  

FUNCTION TCNT(t,x) 
{ 
  i ← 0 
  WHILE (TCNTlist(i) ≠ (t,x)) DO i ← i+1 
  OUTPUT 1 
} 
 

 

TCHalts is an effective Turing machine that takes arguments (t,x) and outputs a 1 if the computation 
Tt(x) halts, or zero if it does not.  It works by computing both TCNT(t,x) and Tt(x) in parallel until one 
or the other halts; given the construction of (and assumptions behind) TCNT, it is guaranteed that 
this will always happen.  Note that U is the universal Turing machine, so U(t,x) ≡ Tt(x). 

FUNCTION TCHalts(t,x) 
{ 
  Initiate both the computations A = TCNT(t,x) and B = U(t,x) 
  REPEAT 
  { 
    perform a single step of computation A 
    perform a single step of computation B 
  } 
  UNTIL (A has halted OR B has halted) 
  IF (A has halted) OUTPUT 0 
  IF (B has halted) OUTPUT 1 
} 
 

 

TNT takes argument t and outputs a 1 if the Turing machine Tt is faulty; otherwise TNT does not halt.  
Note that TNT works by checking the action of Tt on each natural number in turn using TCHalts until 
one of these computations is found to be non-terminating. 

FUNCTION TNT(t) 
{ 
  x ← 0 
  WHILE (TCHalts(t,x) = 1) DO x ← x+1 
  OUTPUT 1 
} 
 

 



 

 

TEff is an effective Turing machine that takes argument t, and outputs a 1 if the Turing machine Tt is 
effective, or a zero if its faulty.  Its existence would prove that the set of effective Turing machines is 
not just r.e., but recursive (a stronger condition).  It works by using TCHalts to determine if the 
computation TNT(t) halts or not.  (Since TNT is a turing machine, it corresponds to some Tt where 
t = tTNT, the constant that encodes TNT). 

FUNCTION TEff(t) 
{ 
  OUTPUT 1-TCHalts(tTNT,t)    // tTNT is the constant that encodes 
}                            // Turing machine TNT 
 

 

Finally, TEffList is an effective Turing machine that recursively enumerates all effective Turing 
machines; its argument is any natural number.  I include its definition here only because the book 
mentions but doesn't explicitly show, that all recursive sets are recursively enumerable.  It simply 
returns its argument if that argument represents (encodes) an effective Turing machine.  If not, it 
returns a constant (‘f0’ in the pseudocode) representing some particular effective Turing machine.  
Which one doesn't matter; for example you could take the Turing machine that immediately halts 
and returns 0, performing no actual computation. 

FUNCTION TEffList(n) 
{ 
  IF (n encodes a syntactically valid Turing machine) 
     AND (TEff(n) = 1) 
    OUTPUT n 
  ELSE OUTPUT f0          // f0 is a constant encoding some effective 
}                         // Turing machine (any one will do) 
 

 

This last Turing machine, TEffList, recursively enumerates all effective Turing machines, establishing 
the implication we wanted to show. 

Earlier, we proved that this recursive enumeration is impossible, and so from this contradiction, we 
can conclude that the initial assumption – that the set of non-terminating Turing machine 
computations is recursively enumerable – must be false! 

 ∎  part (1a) 

 

 

 

 



 

 

Part 1b:  Demonstration that the set of true Π₁-sentences are not r.e. by any formal proof system 

Penrose introduces the terminology of a “formal proof system” without actually defining it.  For our 
purposes here, we need only assume that a “formal proof system” F consists of some formal 
language for representing mathematical statements, as well as axioms and a set of inference rules 
that can be “mechanically implemented”:  That is to say, an effective Turing machine can be defined 
that will either recursively enumerate all mathematically correct proofs in F, or else that will check 
the correctness of a supplied ‘proof’ against the rules of F.  Note that the latter implies the former:  
Given the latter, we could just recursively enumerate all possible proofs, and then use our 
‘correctness checker’ to replace those that are not correct (with some particular correct proof) - thus 
enabling us to recursively enumerate all correct proofs.  So a formal system F enables us to 
recursively enumerate all correct proofs in F.  We can discard the “proof” part and keep only the 
conclusions of the proofs, and if we do that, we are left with a recursive enumeration of all 
mathematical statements provable in F.  For our purposes here, that is the key property possessed 
by a “formal proof system” F:  It permits the recursive enumeration of all statements provable in F. 

Now, if we have constructed F so that its axioms are “mathematically true”, and if its inference rules 
preserve mathematical truth, then we can expect that the “provable statements in F” are in fact all 
true statements of mathematical fact.  The statements provable in F are r.e..  We aim to 
demonstrate that the set of true mathematical statements is NOT r.e., and that therefore, there are 
true statements expressible in the language of F that nevertheless cannot be proved using (only) the 
rules of F. 

 

We will perform this demonstration by showing that a certain class of statements, the 
“Π1-sentences” are each equivalent to the assertion that a particular Turing machine computation 
does not terminate, and make use of the result from part (1a), that the set of non-terminating Turing 
computations is not r.e..  Penrose once again introduces the terminology of a “Π1-sentence” without 
properly defining it, but from the examples he gives it's clear that (for our purposes here at least) we 
can take the “Π1-sentences” to be the set of statements of the form:  “∀n∊ℕ, some statement about 
n”.  Because we've already seen how a single natural number can be used to encode a pair of 
numbers (or more generally an n-tuple), this automatically also includes all statements of the form:  
“∀x, y, ..., z ∊ ℕ, some statement about x, y, ..., z”.  An example is Fermat's Last Theorem:  
“∀a, b, c, n ∊ ℕ, (a+1)n+3 + (b+1)n+3 ≠ (c+1)n+3”.  We can denote a “statement about n” as ‘P(n)’ - a 
predicate that is (potentially) either true or false for each value of n.  Then the Π1-sentences are just 
the set of statements of the form “∀n∊ℕ, P(n) (is true)”; different Π1-sentences are distinguished 
only by different choices of P. 

 

There is a natural way to associate a given (arbitrary) Π1-sentence, “∀n∊ℕ, P(n)” with a particular 
Turing machine computation (given as pseudocode): 

  



 

 

FUNCTION PI1P(x) 
{ 
  n ← 0 
  WHILE P(n) DO n ← n+1 
  OUTPUT 0 
} 
 

This turing machine tests the truth of P(n) for each natural number 0, 1, 2, ... etc. in turn, and halts 
when it finds an n for which P(n) is false. (Note that it makes no use of its argument x). So the 
computation of PI1P(0) (taking x=0 say) halts iff the given Π1-sentence is false. 

 

Can we make use of this particular relationship between Π1-sentences and Turing machines to 
demonstrate the result we are looking for?  Actually we cannot.  The problem is that we have 
mapped the set of all true Π1-sentences onto a subset of all non-terminating Turing machine 
computations.  It's easy to find a non-terminating computation that doesn't match the above code, 
for any choice of P; the simplest is probably just “LOOP INDEFINITELY”.  And knowing that the 
entire set of non-terminating computations is not r.e. doesn't guarantee that subsets of it won't be! 
(E.g. we showed that effective membership functions were not r.e., but if we take only those 
membership functions corresponding to singleton subsets - i.e. the subsets {0}, {1}, {2}, ... etc, then 
this subset of effective membership functions certainly is r.e.).  In fact the relations between r.e. sets 
and subsets is this:  If a set is r.e., its subsets are r.e..  Inverting this, we see that if a subset is not r.e., 
than neither is the complete set.  But knowing that a set is not r.e. tells us nothing about its subsets. 

 

What we need to do is find some association between the set of all non-termination Turing 
computations, on the one hand, and some set of true Π1-sentences on the other.  Then we could 
infer that this set of true Π1-sentences is not r.e., and hence neither is the set of all true Π1-sentences, or the set of all true mathematical statements generally. 

 

Put another way, given an arbitrary Turing machine computation, can we come up with a Π1-sentence that's true iff the computation never terminates?  It's easy enough to do if you 
remember that Turing machine computations are carried out in discrete steps.  Then for an an 
arbitrary computation Tt(x), non-termination is equivalent to the sentence “∀n∊ℕ, Tt(x) does not halt 
after step n”.  To make this into a statement representable in a formal mathematical language, you'd 
need to capture the mechanisms by which Turing machines function in the form of mathematical 
expressions.  Penrose never describes in this book exactly what Turing machines are defined to be, 
except to say they're “idealized computers”, so it might be pretty tough to proceed with nothing but 
this vague idea to go on.  I won't supply those details here either, since they're largely unnecessary.  
The only really important thing to know is that Turing machines have a well-defined “internal state” 
that changes in a fairly simple way at each step of their computations.  (For those who know how 
Turing machines are actually defined, I'm lumping together the tape contents, the tape position, the 
machine state, and the state transition function together into what I'm calling “internal state”).  If 



 

 

we call the space of all possible Turing machine internal states ‘TMS’ then we can quite easily define 
the functions: 

 

I: ℕ x ℕ → TMS 

 

which maps a (t,x) pair representing the computation Tt(x) onto the internal state that represents 
the starting point of that computation, 

 

S: TMS → TMS 

 

which maps any given internal state to the state that follows it after a single computation step, and 

 

H: TMS → {true, false} 

 

a predicate (i.e. a function returning either true or false) that is true when its argument represents 
the internal state of a computation that has halted. 

 

 

In this way we can replace the informal English sentence: 

 

“Turing machine computation Tt(x) does not halt” 

 

with the formal mathematical Π1-sentence 

 ∀n∊ℕ, ¬H(Sn(I(t,x))) 

 

(Where Sn denotes repeated function composition, i.e. S3(q) means S(S(S(q))), and ‘¬’ means ‘not’, 
i.e. ¬H(r) means “H(r) is false”). 

 



 

 

Of course, to do this we must be using a formal proof system F with axioms and syntax powerful 
enough to express all the elements of this sentence, and to define the three functions I, S, and H 
that we require.  However it turns out that this isn't a very strong restriction on F, and that any 
formal proof system capable of representing certain basic properties of arithmetic will suffice. 

 

 

What we have just achieved is to show that there is a true Π1-sentence that uniquely corresponds to 
every non-terminating Turing machine computation (and also a false one that corresponds to each 
terminating computation… but that's not important right now).  Since the non-terminating 
computations are not r.e., neither are their corresponding true Π1-sentences.  So the set of true Π1-sentences is not recursively enumerable, which is the result we were trying to demonstrate in 
this part. 

 ∎  part (1b) 

 

 

(INTERESTING SIDE NOTE:  Our first attempt to relate the set of Π1-sentences to the set of Turing 
machines resulted in an injective function from the former to the latter; the second attempt, which 
we used in the proof, resulted in an injection from the latter to the former.  According to exercise 
[16.10], this means that it's possible to define a bijection between the two sets.  I'll leave it to the 
reader to figure out what that bijection might look like!). 

 

 

 

 

Part 2: 

We have demonstrated in part 1 that the set of true mathematical statements expressible in English 
as “Turing computation Tt(x) does not halt” is not r.e.; and hence neither are mathematical truths 
generally.  We did this by assuming this set was r.e., and showing that this implied that the set of 
effective Turing machines was also r.e., which we know to be false.  However, unlike (say) the 
Cantor’s diagonal slash argument, which contradicts it’s assumptions by constructing a concrete 
counterexample, our method of proof provided no such concrete counterexample.  We seek one 
now.  Specifically, let us suppose F(n) is the effective Turing machine associated with the formal 
proof system F, that recursively enumerates all (true) mathematical statements provable by F.  Then 
we seek to construct some mathematical statement, G(F), that isn’t enumerated by F(n) (and hence 



 

 

can’t be proven by F), but which is true nonetheless.  We’ll do this by modifying and simplifying the 
part 1 proof in several steps until we have constructed such a statement. 

 

The first rather trivial adjustment step we obviously need is to take F(n) as the source of our 
recursive enumeration of non-halting computations.  To do this we simply need to replace the first 
Turing machine in our series, TCNT, with this new version: 

FUNCTION TCNT(t,x) 
{ 
  i ← 0 
  WHILE (F(i) ≠ “∀n∊ℕ, ¬H(Sn(I(t,x)))”) DO i ← i+1 
  OUTPUT 1 
} 
 

Now, since F(n) recursively enumerates all provable statements (in F), this obviously includes all the 
provable statements of the specific form “∀n∊ℕ, ¬H(Sn(I(t,x)))” – i.e. in English “Turing computation 
Tt(x) does not halt”.  The fact that many other kinds of statement will be enumerated as well needn’t 
concern us; it does not affect the validity of the algorithm. 

 

The next step is to continue the proof all the way through the Cantor diagonal slash argument.  
Previously we used the result of that argument to contradict the existence of TEffList (or rather, to 
show that this Turing machine could not work as intended, and hence that the assumption behind its 
construction was false).  However, actually working through the diagonal slash argument using 
TEffList to construct a “diagonal” Turing machine turns out to be a fruitful avenue of investigation, as 
we will see.  We can construct such a Turing machine, TDiag, by simply adding 1 to each of the 
diagonals in the list of Turing machines given by TEffList.  The algorithm is as follows: 

FUNCTION TDiag(n) 
{ 
  OUTPUT U(TEffList(n),n)+1 
} 
 

Expanding out the contents of TEffList and then TEff in turn directly into the algorithm yields this:  

FUNCTION TDiag(n) 
{ 
  IF (n encodes a syntactically valid Turing machine) 
     AND (TCHalts(tTNT,n) = 0) 
    OUTPUT U(n,n)+1 
  ELSE OUTPUT F0(n)+1   // F0 is some effective Turing machine 
}                       // (any one will do) 
 

Note that these are the same Turing machines (hence the same name) – all I’ve done is to present 
the same algorithm in a slightly different way. 



 

 

Now, there are three simplifications we can make here.  The first is to assume that all values of n 
encode valid Turing machines.  This could be achieved by using an encoding that produces a unique, 
valid Turing machine for each value of n (i.e. the nth valid Turing machine), or else, perhaps more 
easily, by simply substituting some particular validly-coded machine whenever an invalid code is 
provided.  That is to say, we could define U(t,x) ≡ Tt(x) when t is a valid code, and U(t,x) ≡ Tdefault(x) 
when it isn’t.  It doesn’t matter what Tdefault actually does, only that it’s a respectable Turing machine.  
It could simply be the “LOOP INDEFINITELY” machine (making all invalid codes faulty, as 
Penrose suggests), or the “HALT AND OUTPUT 0” machine (making all invalid codes effective).  It 
really doesn’t matter.  The only important thing to note is that the behaviour of our function I(t,x) 
must also change accordingly, i.e. we must have I(t,x) ≡ I(tdefault,x) whenever t is an invalid code.  
(Here tdefault is the valid code that normally encodes Turing machine Tdefault, obviously).  At this point it 
might be worth mentioning that U(t,x) can actually be constructed using functions I, S, and H: 

FUNCTION U(t,x) 
{ 
  c ← I(t,x) 
  WHILE (¬H(c)) DO c ← S(c) 
  OUTPUT R(c) 
} 
 

Here c holds the internal state of the Turing machine computation we are performing, and R is the 
function: 

R: TMS → ℕ 

That returns the output value corresponding to a given Turing machine internal state, if that state is 
a halted state (i.e. it returns the output value of the corresponding completed computation).  If it’s 
not a halted state, the return value of R is undefined. 

If U is defined in this way, that leaves the function I as the sole entity for translating (or associating) 
integer values with particular Turing machines.  So if I is modified (as above) to produce a valid 
Turing machine for any input value, then effectively, there are no longer any “invalid” values, and we 
needn’t bother checking for them specifically in our algorithm.    

 

The second simplification is to note that for the purposes of our diagonal slash argument, the output 
of TDiag(n) doesn’t matter when Tn is not an effective Turing machine.  Our list of effective Turing 
machines is constructed by first listing all Turing machines (by code), and then simply replacing the 
faulty ones with F0, which is just some (arbitrarily chosen) effective Turing machine.  That means that 
F0 will appear many times in the list.  It will appear in its “proper” position, the f0’th position, as well 
as in every position n that encodes a faulty Turing machine.  Our goal in constructing TDiag is that it 
should differ from every entry in the list, including F0.  However, so long as TDiag(f0) ≠ F0(f0), we are 
guaranteed that TDiag and F0 differ; we do not additionally need TDiag(n) ≠ F0(n) to guarantee this, 
for those other positions n in which F0 appears.  We can therefore replace the line 
“ELSE OUTPUT F0(n)+1” with the simpler line “ELSE OUTPUT 0”. 

 



 

 

The third simplification follows the same logic as the previous one:  The output value is only 
important when n encodes an effective Turing machine.  This is what the condition 
“TCHalts(tTNT,n) = 0” is (supposedly) testing for.  (“Supposedly” because this depends on assumptions 
that ultimately prove to be false).  By definition, when Tn is effective, the computation Tn(n) halts.  
The reverse is not necessarily true though:  Tn(n) might halt (for the specific value n) even if Tn is not 
effective.  What we can say, though, is that if we ensure we have the correct (modified diagonal) 
output value whenever Tn(n) halts, that will certainly cover all the cases when Tn is effective… and 
the other cases don’t matter.  So we can replace the “TCHalts(tTNT,n) = 0” condition, which 
(supposedly) tests to see if Tn is effective (i.e. that Tn(x) halts for all x∊ℕ), with the much simpler 
condition “TCHalts(n,n) = 1”, which only tests (supposedly) whether Tn(x) halts for x=n.  (The new 
condition doesn’t look any simpler written in the form above, but if we expand out the algorithm, it 
now avoids using Turing machine TNT altogether). 

Incorporating these three simplifications into TDiag yields a new Turing machine, (call it TD2) that 
can serve the same purpose in our proof, and can be written thus: 

FUNCTION TD2(n) 
{ 
  IF (TCHalts(n,n) = 1) OUTPUT U(n,n)+1 
  ELSE OUTPUT 0 
} 
 

Expanding out the contents of TCHalts and then further incorporating the algorithms of U and TCNT 
directly (rather than performing abstracted “steps” of these computations until they halt) gives: 

FUNCTION TD3(x) 
{ 
  c ← I(x,x) 
  i ← 0 
  REPEAT 
  { 
    IF (¬H(c)) THEN c ← S(c) ELSE OUTPUT R(c)+1 
    IF (F(i) ≠ “∀n∊ℕ, ¬H(Sn(I(x,x)))”) THEN i ← i+1 ELSE OUTPUT 0 
  } 
} 
 

This single Turing machine replaces (in our proof) every other Turing machine discussed up till now!  
Noting that “OUTPUT z” means “output the value z and then halt”, we can interpret the function of 
this Turing machine as performing two separate computations “in parallel”, until one of them halts.  
(This is actually performed by interleaving the steps of the two computations).  The two 
computations correspond to the two “IF” statements inside the “REPEAT {…}” loop.  The first 
computation attempts to compute and output the value of Tx(x)+1.  The second computation 
recursively enumerates all statements provable by F, and outputs “0” if F can prove that the 
computation of Tx(x) never terminates (i.e. that the first computation never terminates – the “+1” 
part of it makes no difference in that regard, since the final step of adding 1 is guaranteed to 
terminate, if that point is reached). 

 



 

 

The proof now runs as follows: 

 

ASSUME that F can prove every true statement of the form “Turing computation Tx(x) never 
terminates” (for arbitrary x).  Then within TD3, either the first computation or the second one will 
halt, for every argument x;  i.e. TD3 is effective.  Now, let tD3 be the constant that encodes Turing 
machine TD3.  Since TD3 is effective, TD3(tD3) must be halted by the completion of its first 
computation, the result of which is to output the value of TD3(tD3)+1.  But the output value of 
TD3(tD3) cannot equal TD3(tD3)+1, that’s a contradiction!  So the initial assumption must be false.  ∎ 

 

Note that in computational terms, the “contradiction” merely implies that the computation of 
TD3(tD3) never terminates.  You actually end up with an infinite recursion that can be viewed like 
this: 

Value of TD3(tD3) 

= (Value of TD3(tD3))+1 

= ((Value of TD3(tD3))+1)+1 

= (((Value of TD3(tD3))+1)+1)+1 

= ((((Value of TD3(tD3))+1)+1)+1)+1 

⁞ 

 

Now the proof just given demonstrates that F cannot prove every true statement of the form 
“Turing computation Tz(z) never terminates”.  Since these kind of statements are Π1-sentences, and 
since the only property of F we used is that it provides a recursive enumeration of some set of true 
statements, we have shown (again) that the true Π1-sentences are not r.e.. 

 

As worded above, the proof is much shorter than the version from part 1, but still doesn’t give us the 
Gödel statement G(F) that we’re looking for.  But – and here’s why using TD3 is such a big advantage 
– we can rework it this way: 

 

Let tD3 be the constant that encodes Turing machine TD3, and consider the computation of TD3(tD3).  
Suppose it is halted via the completion of its first (internal) computation, the result of which is to 
output the value of TD3(tD3)+1.  But the output value of TD3(tD3) cannot equal TD3(tD3)+1, that’s a 
contradiction!  So it cannot halt via completion of its first internal computation.  Alternatively, 
suppose it is halted via the completion of its second (internal) computation.  This can only occur if F 
can prove that TD3(tD3) does not halt.  So either F has proved a false statement, contradicting the 



 

 

assumption that F is trustworthy (proves only true statements), or else TD3(tD3) does not halt via the 
completion of its second internal computation.  Therefore TD3(tD3) does not halt via the completion 
of its second internal computation.  Therefore, TD3(tD3) does not halt (at all).  Furthermore, the fact 
that the second internal computation does not halt demonstrates that F cannot prove that TD3(tD3) 
does not halt! 

Therefore, “TD3(tD3) does not halt” is a true statement (a Π1-sentence), and cannot be proved by F! 

 

So we have shown that F cannot prove all true Π1-sentences, and we have obtained an example of a 
true Π1-sentence that is not provable by F.  We could take this sentence to be the G(F) we’re looking 
for, and we’d be finished.  However, examining the last version of the proof closely, it turns out that 
the only role played by the “first internal computation” is that it cannot be the reason why TD3(tD3) 
halts.  Well, if that’s all it’s doing, we can omit it altogether, and the proof will still work! 

 

Accordingly, the complete and maximally simplified version of the proof is as follows: 

 

 

Let F be a formal proof system, and let F(n) be a recursive enumeration of all statements provable by 
F.  Let P be the Turing machine given by the following algorithm: 

FUNCTION P(x) 
{ 
  i ← 0 
  WHILE (F(i) ≠ “∀n∊ℕ, ¬H(Sn(I(x,x)))”) DO i ← i+1 
  OUTPUT 0 
} 
 

Here I, S, and H are the Turing machine initial state and single-step functions, and halting predicate, 
respectively, as defined earlier.  P is constructed such that P(x) halts iff F can prove that the 
computation Tx(x) does not halt.  Now let p be the constant that encodes P, i.e. P ≡ Tp, and consider 
whether or not the computation of P(p) ≡ Tp(p) will halt.  By the construction of P, it will halt iff F can 
prove that it won’t.  Therefore, it will only halt if F can prove a falsehood.  Otherwise, it will not halt, 
and furthermore F cannot prove that it will not halt. 

Therefore, if F is trustworthy (proves only true statements), then F cannot prove all true 
mathematical statements, and in particular F cannot prove the Π1-sentence G(F): 

G(F)  =  “∀n∊ℕ, ¬H(Sn(I(p,p)))” 

G(F) is expressible in English as “Turing machine computation Tp(p) does not halt”.  Note that this 
depends on F because P’s algorithm includes the evaluation of F(i), and the details of P determine p. ∎ 



 

 

Addendum: 

We arrived at the final proof (the one on the bottom half of the last page) only after a long and 
circuitous route that began with the Turing/Cantor argument given in the text – a proof that the set 
of effective Turing machines is not recursively enumerable.  There is another kind of Turing/Cantor 
argument that we can make, that leads to the final proof much more directly; almost immediately, in 
fact.  Probably it’s what Penrose had in mind when he refers to “Turing’s argument above”, though it 
actually isn’t the same as the “argument above” in the book.  It is as follows: 

 

Let us denote the result of each Turing machine computation by its numerical output, if it 
terminates, and by ‘N’ if it does not.  Then we can imagine constructing a table containing the results 
of all Turing machine computations, by listing all the Turing machines (T0, T1, T2, T3, …etc.) along the 
left hand side, and all possible arguments (0, 1, 2, 3, …etc.) along the top.  (We may need to apply 
some convention to handle numbers that don’t encode valid Turing machines, if our encoding 
method admits such:  Just replace invalid entries with some ‘default’ Turing machine).  Now apply 
Cantor’s diagonal slash to this table:  Attempt to construct a Turing machine whose result, for every 
argument x, differs from that of computation Tx(x) – either by producing a different numerical 
output, or because the result of one is ‘N’ and the result of the other is not.  Such a Turing machine, 
if it were constructible, would differ from every Turing machine listed along the left hand side of the 
table.  Therefore, either this list does not include every possible Turing machine, or else we cannot 
construct a Turing machine to function as described.  But we know that (given an adequate coding 
scheme) we can encode every Turing machine as Tn for some value n∊ℕ., and that therefore the list 
does contain every possible Turing machine.  So it must be the second alternative that holds:  We 
cannot construct a Turing machine to function as described. 

 

(Note that this argument differs from other versions of Cantor’s diagonal slash that we’ve seen in 
the book so far, in that it proves that the “diagonal construction” is impossible, rather than proving 
that the list is incomplete). 

 

To actually construct this impossible “diagonal” Turing machine, we’d need an algorithm for 
determining when the result of a computation Tx(x) was ‘N’ (never terminates).  Since this result is 
equivalent to the mathematical Π1-sentence “∀n∊ℕ, ¬H(Sn(I(p,p)))”, we can show that a recursive 
enumeration F(n) of all true Π1-sentences would allow us to construct this (impossible) Turing 
machine, thus demonstrating that no such recursive enumeration is possible. 

If we assume we do have such an F(n), and decide to construct our Turing machine to output ‘0’ 
when Tx(x) results in ‘N’, and Tx(x)+1 otherwise, then TD3 (or something similar) would be the 
machine we construct.  If instead we choose to output ‘0’ when Tx(x) results in ‘N’, and to result in 
‘N’ otherwise, then P (or similar) would be the end product of our construction. 

Having thus arrived at these Turing machine constructions, it becomes very obvious where the final 
proof, involving P, comes from (and ditto for the preceding alternative version involving TD3). 


