

Exercise [16.18]

In the text, Penrose states:

“Now it follows immediately from Turing’s argument above that the family of true Π1-sentences
constitutes a non-recursively enumerable set”

In my opinion, given the actual description of Turing's argument presented in the preceding text, this
rather stretches the meaning of the word “immediately”!

Accordingly, part 1 of my solution to this problem is to show in detail how the Turing argument given
in the text can be used to “immediately” (!) show that true Π1-sentences are not r.e. (recursively
enumerable).

Part 2 of my solution is to adapt the part 1 proof to find a particular Π1-sentence G(F), that must be
true if a given formal proof system F is trustworthy, but that nevertheless can't be proved using F.

As an addendum, I provide a much more direct route to the final proof, that also utilizes a
Turing/Cantor style argument, but a different one from that given in the text.

Part 1:

The goal of this part is to show that true Π1-sentences are not r.e. (recursively enumerable) by any
formal proof system F. I'll do this in two stages. Part (1a) will demonstrate that non-terminating
Turing machine computations are not r.e.. Then in part (1b) I'll explain the relationship between
Turing machine computations and Π1-sentences, and use this relationship to complete the part (1)
goal.

Part 1a: Proof that non-terminating Turing machine computations are not r.e.

The text discusses using Cantor's diagonal slash to prove that a particular subset of effective Turing
machines (the ones that output only either 0 or 1) are not r.e., but it doesn't go into detail. So here
are the details:

For convenience, let’s call a Turing machine whose output is restricted to only 0 and 1 a
“membership machine” (since each such machine defines the membership of a particular subset of ℕ).

Let us ASSUME that the set of effective membership machines is r.e. - i.e. that there is an effective
Turing machine MEff that lists every effective membership machine (in no particular order, and
perhaps with duplicates). We can state this more formally: ∀n∊ℕ, TMEff(n) is an effective membership
machine, and for every effective membership machine M, there is at least one n such that
M = TMEff(n). But now consider the particular membership machine defined as follows:

M(x) = TMEff(x)(x) + 1 (mod 2)

It's clearly possible to construct a Turing machine that performs the calculation on the RHS (it would
involve computing MEff(x), then using the universal Turing machine U to compute
TMEff(x)(x) = U(MEff(x), x). Since all the elements involved in calculating the RHS are effective (i.e. all
the computations are guaranteed to halt and produce a result), M is clearly also an effective
membership machine. But by construction it differs from every TMEff(n). Therefore, it is not part of
the list enumerated by MEff. This contradicts the assumption that MEff recursively enumerates
every effective membership machine. So effective membership machines are not r.e.. Since
effective membership machines are just a subset of effective Turing machines, this means that
effective Turing machines are not r.e. either. ∎

(Actually, the last sentence only follows if it's a computable matter to distinguish between Turing
machines that are or are not membership machines. It is iff we consider only those Turing machines
who's algorithm explicitly outputs only either a zero or a one as a membership machine. But in any
case, the argument above, although phrased so as to apply to the recursive enumeration of effective
membership machines, in fact works just fine if we apply it to the recursive enumeration of effective
Turing machines generally. That approach gives us a more direct proof that effective Turing
machines are not r.e.; it just doesn't happen to be how it was done in the text).

So, we've established that the set of effective Turing machines is not r.e.. What does this tell us
about the complement of that set, i.e. the set of faulty Turing machines? Or about the set of
non-terminating Turing machine computations? At first glance, it would seem that the answer might
be “not much”. Knowing that some set S is not r.e. doesn't (in general) tell us whether or not its
complement is or is not r.e.. However it turns out that we can show that if non-terminating Turing
machine computations were r.e., then this would imply that effective Turing machines were also r.e..
And since we've just shown that the latter isn't true, the former can’t be either. It remains, then, to
demonstrate this implication.

I'll do this formally by constructing a series of Turing machines with particular properties, given here
as pseudo-code algorithms, culminating in one that recursively enumerates all effective Turing
machines. To make this rather cumbersome set of constructions easier to follow, a brief summary of
the overall plan might be helpful before I get into the details:

Basically the idea is that if you could list all the non-terminating computations, you could determine
for sure whether any computation will stop or not: Just run the computation and at the same time
step through the list. Either the computation will terminate, or it'll be in the list - and therefore
within in a finite time you'll know if it terminates or not. So now consider the following operation:
For a given (validly coded) Turing machine T, consider its action on each natural number 0, 1, 2,... in
turn, testing to see if each computation terminates, until you find one that doesn't. This operation is
itself a computation, and it terminates iff T is faulty. So by testing whether this computation
terminates, you can determine for sure within a finite time whether an arbitrary Turing machine is
effective or not. To recursively list all effective Turing machines then, you could first list ALL Turing
machines, and then just replace all the faulty ones in the list (which you can now detect) with some
particular effective one.

That's the summary. The details are as follows:

Let us ASSUME that the set of non-terminating Turing machine computations is r.e. - i.e. that there is
some effective Turing machine TCNTlist that lists every non-terminating Turing machine
computation. More formally, for ∀n∊ℕ, TCNTlist(n) successfully outputs an ordered pair (t,x) such
that the computation Tt(x) never halts; and for every possible non-halting computation, there is at
least one n such that TCNTlist outputs the (t,x) pair corresponding to that particular computation.

(Note Penrose's comments on p375 about encoding/decoding pairs of numbers as a single number -
they apply equally well to the outputs of Turing machines as well as their inputs; also we can in fact
encode larger n-tuples of numbers and not just pairs, a fact which we will make use of later).

Now, given TCNTlist, we can define the following series of Turing machines:

TCNT takes arguments (t,x) and outputs a 1 if the computation Tt(x) never halts; if it DOES halt, TCNT
will not. Note that TCNT works by simply attempting to recursively enumerate all non-terminating
computations until it finds the one that matches its argument. Note that the argument ‘t’ is always
assumed to represent (encode) a validly coded Turing machine, for this and all the following Turing
machines; except for the last one, TEffList, they don't include any logic to handle the case when the
argument representing a Turing machine does not represent a syntactically valid (correctly coded)
one.

FUNCTION TCNT(t,x)
{
 i ← 0
 WHILE (TCNTlist(i) ≠ (t,x)) DO i ← i+1
 OUTPUT 1
}

TCHalts is an effective Turing machine that takes arguments (t,x) and outputs a 1 if the computation
Tt(x) halts, or zero if it does not. It works by computing both TCNT(t,x) and Tt(x) in parallel until one
or the other halts; given the construction of (and assumptions behind) TCNT, it is guaranteed that
this will always happen. Note that U is the universal Turing machine, so U(t,x) ≡ Tt(x).

FUNCTION TCHalts(t,x)
{
 Initiate both the computations A = TCNT(t,x) and B = U(t,x)
 REPEAT
 {
 perform a single step of computation A
 perform a single step of computation B
 }
 UNTIL (A has halted OR B has halted)
 IF (A has halted) OUTPUT 0
 IF (B has halted) OUTPUT 1
}

TNT takes argument t and outputs a 1 if the Turing machine Tt is faulty; otherwise TNT does not halt.
Note that TNT works by checking the action of Tt on each natural number in turn using TCHalts until
one of these computations is found to be non-terminating.

FUNCTION TNT(t)
{
 x ← 0
 WHILE (TCHalts(t,x) = 1) DO x ← x+1
 OUTPUT 1
}

TEff is an effective Turing machine that takes argument t, and outputs a 1 if the Turing machine Tt is
effective, or a zero if its faulty. Its existence would prove that the set of effective Turing machines is
not just r.e., but recursive (a stronger condition). It works by using TCHalts to determine if the
computation TNT(t) halts or not. (Since TNT is a turing machine, it corresponds to some Tt where
t = tTNT, the constant that encodes TNT).

FUNCTION TEff(t)
{
 OUTPUT 1-TCHalts(tTNT,t) // tTNT is the constant that encodes
} // Turing machine TNT

Finally, TEffList is an effective Turing machine that recursively enumerates all effective Turing
machines; its argument is any natural number. I include its definition here only because the book
mentions but doesn't explicitly show, that all recursive sets are recursively enumerable. It simply
returns its argument if that argument represents (encodes) an effective Turing machine. If not, it
returns a constant (‘f0’ in the pseudocode) representing some particular effective Turing machine.
Which one doesn't matter; for example you could take the Turing machine that immediately halts
and returns 0, performing no actual computation.

FUNCTION TEffList(n)
{
 IF (n encodes a syntactically valid Turing machine)
 AND (TEff(n) = 1)
 OUTPUT n
 ELSE OUTPUT f0 // f0 is a constant encoding some effective
} // Turing machine (any one will do)

This last Turing machine, TEffList, recursively enumerates all effective Turing machines, establishing
the implication we wanted to show.

Earlier, we proved that this recursive enumeration is impossible, and so from this contradiction, we
can conclude that the initial assumption – that the set of non-terminating Turing machine
computations is recursively enumerable – must be false!

 ∎ part (1a)

Part 1b: Demonstration that the set of true Π₁-sentences are not r.e. by any formal proof system

Penrose introduces the terminology of a “formal proof system” without actually defining it. For our
purposes here, we need only assume that a “formal proof system” F consists of some formal
language for representing mathematical statements, as well as axioms and a set of inference rules
that can be “mechanically implemented”: That is to say, an effective Turing machine can be defined
that will either recursively enumerate all mathematically correct proofs in F, or else that will check
the correctness of a supplied ‘proof’ against the rules of F. Note that the latter implies the former:
Given the latter, we could just recursively enumerate all possible proofs, and then use our
‘correctness checker’ to replace those that are not correct (with some particular correct proof) - thus
enabling us to recursively enumerate all correct proofs. So a formal system F enables us to
recursively enumerate all correct proofs in F. We can discard the “proof” part and keep only the
conclusions of the proofs, and if we do that, we are left with a recursive enumeration of all
mathematical statements provable in F. For our purposes here, that is the key property possessed
by a “formal proof system” F: It permits the recursive enumeration of all statements provable in F.

Now, if we have constructed F so that its axioms are “mathematically true”, and if its inference rules
preserve mathematical truth, then we can expect that the “provable statements in F” are in fact all
true statements of mathematical fact. The statements provable in F are r.e.. We aim to
demonstrate that the set of true mathematical statements is NOT r.e., and that therefore, there are
true statements expressible in the language of F that nevertheless cannot be proved using (only) the
rules of F.

We will perform this demonstration by showing that a certain class of statements, the
“Π1-sentences” are each equivalent to the assertion that a particular Turing machine computation
does not terminate, and make use of the result from part (1a), that the set of non-terminating Turing
computations is not r.e.. Penrose once again introduces the terminology of a “Π1-sentence” without
properly defining it, but from the examples he gives it's clear that (for our purposes here at least) we
can take the “Π1-sentences” to be the set of statements of the form: “∀n∊ℕ, some statement about
n”. Because we've already seen how a single natural number can be used to encode a pair of
numbers (or more generally an n-tuple), this automatically also includes all statements of the form:
“∀x, y, ..., z ∊ ℕ, some statement about x, y, ..., z”. An example is Fermat's Last Theorem:
“∀a, b, c, n ∊ ℕ, (a+1)n+3 + (b+1)n+3 ≠ (c+1)n+3”. We can denote a “statement about n” as ‘P(n)’ - a
predicate that is (potentially) either true or false for each value of n. Then the Π1-sentences are just
the set of statements of the form “∀n∊ℕ, P(n) (is true)”; different Π1-sentences are distinguished
only by different choices of P.

There is a natural way to associate a given (arbitrary) Π1-sentence, “∀n∊ℕ, P(n)” with a particular
Turing machine computation (given as pseudocode):

FUNCTION PI1P(x)
{
 n ← 0
 WHILE P(n) DO n ← n+1
 OUTPUT 0
}

This turing machine tests the truth of P(n) for each natural number 0, 1, 2, ... etc. in turn, and halts
when it finds an n for which P(n) is false. (Note that it makes no use of its argument x). So the
computation of PI1P(0) (taking x=0 say) halts iff the given Π1-sentence is false.

Can we make use of this particular relationship between Π1-sentences and Turing machines to
demonstrate the result we are looking for? Actually we cannot. The problem is that we have
mapped the set of all true Π1-sentences onto a subset of all non-terminating Turing machine
computations. It's easy to find a non-terminating computation that doesn't match the above code,
for any choice of P; the simplest is probably just “LOOP INDEFINITELY”. And knowing that the
entire set of non-terminating computations is not r.e. doesn't guarantee that subsets of it won't be!
(E.g. we showed that effective membership functions were not r.e., but if we take only those
membership functions corresponding to singleton subsets - i.e. the subsets {0}, {1}, {2}, ... etc, then
this subset of effective membership functions certainly is r.e.). In fact the relations between r.e. sets
and subsets is this: If a set is r.e., its subsets are r.e.. Inverting this, we see that if a subset is not r.e.,
than neither is the complete set. But knowing that a set is not r.e. tells us nothing about its subsets.

What we need to do is find some association between the set of all non-termination Turing
computations, on the one hand, and some set of true Π1-sentences on the other. Then we could
infer that this set of true Π1-sentences is not r.e., and hence neither is the set of all true Π1-sentences, or the set of all true mathematical statements generally.

Put another way, given an arbitrary Turing machine computation, can we come up with a Π1-sentence that's true iff the computation never terminates? It's easy enough to do if you
remember that Turing machine computations are carried out in discrete steps. Then for an an
arbitrary computation Tt(x), non-termination is equivalent to the sentence “∀n∊ℕ, Tt(x) does not halt
after step n”. To make this into a statement representable in a formal mathematical language, you'd
need to capture the mechanisms by which Turing machines function in the form of mathematical
expressions. Penrose never describes in this book exactly what Turing machines are defined to be,
except to say they're “idealized computers”, so it might be pretty tough to proceed with nothing but
this vague idea to go on. I won't supply those details here either, since they're largely unnecessary.
The only really important thing to know is that Turing machines have a well-defined “internal state”
that changes in a fairly simple way at each step of their computations. (For those who know how
Turing machines are actually defined, I'm lumping together the tape contents, the tape position, the
machine state, and the state transition function together into what I'm calling “internal state”). If

we call the space of all possible Turing machine internal states ‘TMS’ then we can quite easily define
the functions:

I: ℕ x ℕ → TMS

which maps a (t,x) pair representing the computation Tt(x) onto the internal state that represents
the starting point of that computation,

S: TMS → TMS

which maps any given internal state to the state that follows it after a single computation step, and

H: TMS → {true, false}

a predicate (i.e. a function returning either true or false) that is true when its argument represents
the internal state of a computation that has halted.

In this way we can replace the informal English sentence:

“Turing machine computation Tt(x) does not halt”

with the formal mathematical Π1-sentence

 ∀n∊ℕ, ¬H(Sn(I(t,x)))

(Where Sn denotes repeated function composition, i.e. S3(q) means S(S(S(q))), and ‘¬’ means ‘not’,
i.e. ¬H(r) means “H(r) is false”).

Of course, to do this we must be using a formal proof system F with axioms and syntax powerful
enough to express all the elements of this sentence, and to define the three functions I, S, and H
that we require. However it turns out that this isn't a very strong restriction on F, and that any
formal proof system capable of representing certain basic properties of arithmetic will suffice.

What we have just achieved is to show that there is a true Π1-sentence that uniquely corresponds to
every non-terminating Turing machine computation (and also a false one that corresponds to each
terminating computation… but that's not important right now). Since the non-terminating
computations are not r.e., neither are their corresponding true Π1-sentences. So the set of true Π1-sentences is not recursively enumerable, which is the result we were trying to demonstrate in
this part.

 ∎ part (1b)

(INTERESTING SIDE NOTE: Our first attempt to relate the set of Π1-sentences to the set of Turing
machines resulted in an injective function from the former to the latter; the second attempt, which
we used in the proof, resulted in an injection from the latter to the former. According to exercise
[16.10], this means that it's possible to define a bijection between the two sets. I'll leave it to the
reader to figure out what that bijection might look like!).

Part 2:

We have demonstrated in part 1 that the set of true mathematical statements expressible in English
as “Turing computation Tt(x) does not halt” is not r.e.; and hence neither are mathematical truths
generally. We did this by assuming this set was r.e., and showing that this implied that the set of
effective Turing machines was also r.e., which we know to be false. However, unlike (say) the
Cantor’s diagonal slash argument, which contradicts it’s assumptions by constructing a concrete
counterexample, our method of proof provided no such concrete counterexample. We seek one
now. Specifically, let us suppose F(n) is the effective Turing machine associated with the formal
proof system F, that recursively enumerates all (true) mathematical statements provable by F. Then
we seek to construct some mathematical statement, G(F), that isn’t enumerated by F(n) (and hence

can’t be proven by F), but which is true nonetheless. We’ll do this by modifying and simplifying the
part 1 proof in several steps until we have constructed such a statement.

The first rather trivial adjustment step we obviously need is to take F(n) as the source of our
recursive enumeration of non-halting computations. To do this we simply need to replace the first
Turing machine in our series, TCNT, with this new version:

FUNCTION TCNT(t,x)
{
 i ← 0
 WHILE (F(i) ≠ “∀n∊ℕ, ¬H(Sn(I(t,x)))”) DO i ← i+1
 OUTPUT 1
}

Now, since F(n) recursively enumerates all provable statements (in F), this obviously includes all the
provable statements of the specific form “∀n∊ℕ, ¬H(Sn(I(t,x)))” – i.e. in English “Turing computation
Tt(x) does not halt”. The fact that many other kinds of statement will be enumerated as well needn’t
concern us; it does not affect the validity of the algorithm.

The next step is to continue the proof all the way through the Cantor diagonal slash argument.
Previously we used the result of that argument to contradict the existence of TEffList (or rather, to
show that this Turing machine could not work as intended, and hence that the assumption behind its
construction was false). However, actually working through the diagonal slash argument using
TEffList to construct a “diagonal” Turing machine turns out to be a fruitful avenue of investigation, as
we will see. We can construct such a Turing machine, TDiag, by simply adding 1 to each of the
diagonals in the list of Turing machines given by TEffList. The algorithm is as follows:

FUNCTION TDiag(n)
{
 OUTPUT U(TEffList(n),n)+1
}

Expanding out the contents of TEffList and then TEff in turn directly into the algorithm yields this:

FUNCTION TDiag(n)
{
 IF (n encodes a syntactically valid Turing machine)
 AND (TCHalts(tTNT,n) = 0)
 OUTPUT U(n,n)+1
 ELSE OUTPUT F0(n)+1 // F0 is some effective Turing machine
} // (any one will do)

Note that these are the same Turing machines (hence the same name) – all I’ve done is to present
the same algorithm in a slightly different way.

Now, there are three simplifications we can make here. The first is to assume that all values of n
encode valid Turing machines. This could be achieved by using an encoding that produces a unique,
valid Turing machine for each value of n (i.e. the nth valid Turing machine), or else, perhaps more
easily, by simply substituting some particular validly-coded machine whenever an invalid code is
provided. That is to say, we could define U(t,x) ≡ Tt(x) when t is a valid code, and U(t,x) ≡ Tdefault(x)
when it isn’t. It doesn’t matter what Tdefault actually does, only that it’s a respectable Turing machine.
It could simply be the “LOOP INDEFINITELY” machine (making all invalid codes faulty, as
Penrose suggests), or the “HALT AND OUTPUT 0” machine (making all invalid codes effective). It
really doesn’t matter. The only important thing to note is that the behaviour of our function I(t,x)
must also change accordingly, i.e. we must have I(t,x) ≡ I(tdefault,x) whenever t is an invalid code.
(Here tdefault is the valid code that normally encodes Turing machine Tdefault, obviously). At this point it
might be worth mentioning that U(t,x) can actually be constructed using functions I, S, and H:

FUNCTION U(t,x)
{
 c ← I(t,x)
 WHILE (¬H(c)) DO c ← S(c)
 OUTPUT R(c)
}

Here c holds the internal state of the Turing machine computation we are performing, and R is the
function:

R: TMS → ℕ

That returns the output value corresponding to a given Turing machine internal state, if that state is
a halted state (i.e. it returns the output value of the corresponding completed computation). If it’s
not a halted state, the return value of R is undefined.

If U is defined in this way, that leaves the function I as the sole entity for translating (or associating)
integer values with particular Turing machines. So if I is modified (as above) to produce a valid
Turing machine for any input value, then effectively, there are no longer any “invalid” values, and we
needn’t bother checking for them specifically in our algorithm.

The second simplification is to note that for the purposes of our diagonal slash argument, the output
of TDiag(n) doesn’t matter when Tn is not an effective Turing machine. Our list of effective Turing
machines is constructed by first listing all Turing machines (by code), and then simply replacing the
faulty ones with F0, which is just some (arbitrarily chosen) effective Turing machine. That means that
F0 will appear many times in the list. It will appear in its “proper” position, the f0’th position, as well
as in every position n that encodes a faulty Turing machine. Our goal in constructing TDiag is that it
should differ from every entry in the list, including F0. However, so long as TDiag(f0) ≠ F0(f0), we are
guaranteed that TDiag and F0 differ; we do not additionally need TDiag(n) ≠ F0(n) to guarantee this,
for those other positions n in which F0 appears. We can therefore replace the line
“ELSE OUTPUT F0(n)+1” with the simpler line “ELSE OUTPUT 0”.

The third simplification follows the same logic as the previous one: The output value is only
important when n encodes an effective Turing machine. This is what the condition
“TCHalts(tTNT,n) = 0” is (supposedly) testing for. (“Supposedly” because this depends on assumptions
that ultimately prove to be false). By definition, when Tn is effective, the computation Tn(n) halts.
The reverse is not necessarily true though: Tn(n) might halt (for the specific value n) even if Tn is not
effective. What we can say, though, is that if we ensure we have the correct (modified diagonal)
output value whenever Tn(n) halts, that will certainly cover all the cases when Tn is effective… and
the other cases don’t matter. So we can replace the “TCHalts(tTNT,n) = 0” condition, which
(supposedly) tests to see if Tn is effective (i.e. that Tn(x) halts for all x∊ℕ), with the much simpler
condition “TCHalts(n,n) = 1”, which only tests (supposedly) whether Tn(x) halts for x=n. (The new
condition doesn’t look any simpler written in the form above, but if we expand out the algorithm, it
now avoids using Turing machine TNT altogether).

Incorporating these three simplifications into TDiag yields a new Turing machine, (call it TD2) that
can serve the same purpose in our proof, and can be written thus:

FUNCTION TD2(n)
{
 IF (TCHalts(n,n) = 1) OUTPUT U(n,n)+1
 ELSE OUTPUT 0
}

Expanding out the contents of TCHalts and then further incorporating the algorithms of U and TCNT
directly (rather than performing abstracted “steps” of these computations until they halt) gives:

FUNCTION TD3(x)
{
 c ← I(x,x)
 i ← 0
 REPEAT
 {
 IF (¬H(c)) THEN c ← S(c) ELSE OUTPUT R(c)+1
 IF (F(i) ≠ “∀n∊ℕ, ¬H(Sn(I(x,x)))”) THEN i ← i+1 ELSE OUTPUT 0
 }
}

This single Turing machine replaces (in our proof) every other Turing machine discussed up till now!
Noting that “OUTPUT z” means “output the value z and then halt”, we can interpret the function of
this Turing machine as performing two separate computations “in parallel”, until one of them halts.
(This is actually performed by interleaving the steps of the two computations). The two
computations correspond to the two “IF” statements inside the “REPEAT {…}” loop. The first
computation attempts to compute and output the value of Tx(x)+1. The second computation
recursively enumerates all statements provable by F, and outputs “0” if F can prove that the
computation of Tx(x) never terminates (i.e. that the first computation never terminates – the “+1”
part of it makes no difference in that regard, since the final step of adding 1 is guaranteed to
terminate, if that point is reached).

The proof now runs as follows:

ASSUME that F can prove every true statement of the form “Turing computation Tx(x) never
terminates” (for arbitrary x). Then within TD3, either the first computation or the second one will
halt, for every argument x; i.e. TD3 is effective. Now, let tD3 be the constant that encodes Turing
machine TD3. Since TD3 is effective, TD3(tD3) must be halted by the completion of its first
computation, the result of which is to output the value of TD3(tD3)+1. But the output value of
TD3(tD3) cannot equal TD3(tD3)+1, that’s a contradiction! So the initial assumption must be false. ∎

Note that in computational terms, the “contradiction” merely implies that the computation of
TD3(tD3) never terminates. You actually end up with an infinite recursion that can be viewed like
this:

Value of TD3(tD3)

= (Value of TD3(tD3))+1

= ((Value of TD3(tD3))+1)+1

= (((Value of TD3(tD3))+1)+1)+1

= ((((Value of TD3(tD3))+1)+1)+1)+1

⁞

Now the proof just given demonstrates that F cannot prove every true statement of the form
“Turing computation Tz(z) never terminates”. Since these kind of statements are Π1-sentences, and
since the only property of F we used is that it provides a recursive enumeration of some set of true
statements, we have shown (again) that the true Π1-sentences are not r.e..

As worded above, the proof is much shorter than the version from part 1, but still doesn’t give us the
Gödel statement G(F) that we’re looking for. But – and here’s why using TD3 is such a big advantage
– we can rework it this way:

Let tD3 be the constant that encodes Turing machine TD3, and consider the computation of TD3(tD3).
Suppose it is halted via the completion of its first (internal) computation, the result of which is to
output the value of TD3(tD3)+1. But the output value of TD3(tD3) cannot equal TD3(tD3)+1, that’s a
contradiction! So it cannot halt via completion of its first internal computation. Alternatively,
suppose it is halted via the completion of its second (internal) computation. This can only occur if F
can prove that TD3(tD3) does not halt. So either F has proved a false statement, contradicting the

assumption that F is trustworthy (proves only true statements), or else TD3(tD3) does not halt via the
completion of its second internal computation. Therefore TD3(tD3) does not halt via the completion
of its second internal computation. Therefore, TD3(tD3) does not halt (at all). Furthermore, the fact
that the second internal computation does not halt demonstrates that F cannot prove that TD3(tD3)
does not halt!

Therefore, “TD3(tD3) does not halt” is a true statement (a Π1-sentence), and cannot be proved by F!

So we have shown that F cannot prove all true Π1-sentences, and we have obtained an example of a
true Π1-sentence that is not provable by F. We could take this sentence to be the G(F) we’re looking
for, and we’d be finished. However, examining the last version of the proof closely, it turns out that
the only role played by the “first internal computation” is that it cannot be the reason why TD3(tD3)
halts. Well, if that’s all it’s doing, we can omit it altogether, and the proof will still work!

Accordingly, the complete and maximally simplified version of the proof is as follows:

Let F be a formal proof system, and let F(n) be a recursive enumeration of all statements provable by
F. Let P be the Turing machine given by the following algorithm:

FUNCTION P(x)
{
 i ← 0
 WHILE (F(i) ≠ “∀n∊ℕ, ¬H(Sn(I(x,x)))”) DO i ← i+1
 OUTPUT 0
}

Here I, S, and H are the Turing machine initial state and single-step functions, and halting predicate,
respectively, as defined earlier. P is constructed such that P(x) halts iff F can prove that the
computation Tx(x) does not halt. Now let p be the constant that encodes P, i.e. P ≡ Tp, and consider
whether or not the computation of P(p) ≡ Tp(p) will halt. By the construction of P, it will halt iff F can
prove that it won’t. Therefore, it will only halt if F can prove a falsehood. Otherwise, it will not halt,
and furthermore F cannot prove that it will not halt.

Therefore, if F is trustworthy (proves only true statements), then F cannot prove all true
mathematical statements, and in particular F cannot prove the Π1-sentence G(F):

G(F) = “∀n∊ℕ, ¬H(Sn(I(p,p)))”

G(F) is expressible in English as “Turing machine computation Tp(p) does not halt”. Note that this
depends on F because P’s algorithm includes the evaluation of F(i), and the details of P determine p. ∎

Addendum:

We arrived at the final proof (the one on the bottom half of the last page) only after a long and
circuitous route that began with the Turing/Cantor argument given in the text – a proof that the set
of effective Turing machines is not recursively enumerable. There is another kind of Turing/Cantor
argument that we can make, that leads to the final proof much more directly; almost immediately, in
fact. Probably it’s what Penrose had in mind when he refers to “Turing’s argument above”, though it
actually isn’t the same as the “argument above” in the book. It is as follows:

Let us denote the result of each Turing machine computation by its numerical output, if it
terminates, and by ‘N’ if it does not. Then we can imagine constructing a table containing the results
of all Turing machine computations, by listing all the Turing machines (T0, T1, T2, T3, …etc.) along the
left hand side, and all possible arguments (0, 1, 2, 3, …etc.) along the top. (We may need to apply
some convention to handle numbers that don’t encode valid Turing machines, if our encoding
method admits such: Just replace invalid entries with some ‘default’ Turing machine). Now apply
Cantor’s diagonal slash to this table: Attempt to construct a Turing machine whose result, for every
argument x, differs from that of computation Tx(x) – either by producing a different numerical
output, or because the result of one is ‘N’ and the result of the other is not. Such a Turing machine,
if it were constructible, would differ from every Turing machine listed along the left hand side of the
table. Therefore, either this list does not include every possible Turing machine, or else we cannot
construct a Turing machine to function as described. But we know that (given an adequate coding
scheme) we can encode every Turing machine as Tn for some value n∊ℕ., and that therefore the list
does contain every possible Turing machine. So it must be the second alternative that holds: We
cannot construct a Turing machine to function as described.

(Note that this argument differs from other versions of Cantor’s diagonal slash that we’ve seen in
the book so far, in that it proves that the “diagonal construction” is impossible, rather than proving
that the list is incomplete).

To actually construct this impossible “diagonal” Turing machine, we’d need an algorithm for
determining when the result of a computation Tx(x) was ‘N’ (never terminates). Since this result is
equivalent to the mathematical Π1-sentence “∀n∊ℕ, ¬H(Sn(I(p,p)))”, we can show that a recursive
enumeration F(n) of all true Π1-sentences would allow us to construct this (impossible) Turing
machine, thus demonstrating that no such recursive enumeration is possible.

If we assume we do have such an F(n), and decide to construct our Turing machine to output ‘0’
when Tx(x) results in ‘N’, and Tx(x)+1 otherwise, then TD3 (or something similar) would be the
machine we construct. If instead we choose to output ‘0’ when Tx(x) results in ‘N’, and to result in
‘N’ otherwise, then P (or similar) would be the end product of our construction.

Having thus arrived at these Turing machine constructions, it becomes very obvious where the final
proof, involving P, comes from (and ditto for the preceding alternative version involving TD3).

