
Exercise [16.13]:  General form of Cantor’s “diagonal slash” argument 

 

Given two sets A and B, where |A|≤|B| we wish to prove that |A|<|B|.*  It suffices to show that 
there is no surjection† from A onto B.  The “diagonal slash” argument, when applicable, 
demonstrates precisely this. 

 

 

The key to the “diagonal slash” argument is to first find a bijection between B and some set  F ⊆ XA,  
for some (arbitrary) set X.  Recall that XA is the set of all functions from A to X.  So each element b of 
B must correspond to some particular function  fb: A → X.   Let G be this bijection, so that  G(b) = fb  
and  G-1(fb) = b. 

Then we must define a permutation function  p: X → X  such that  p(x) ≠ x  for all x ∊ X.  Note that 
when  F = XA,  any p with this property will do.  However, if  F ⊂ XA  then we may have to choose p 
more carefully; the criterion for choosing p will be explained below. 

 

Now we can proceed with the actual argument. 

 

Let  S : A → B  be any function from A to B.  Construct the function  fq ∊ F  as follows: 

fq(a) = p(fS(a)(a)) 

Where of course fS(a) is simply another way of writing G(S(a)).  We require fq thus constructed to be 
an element of F, and if  F ⊂ XA  we may need to choose p carefully to ensure that it is.  This allows us 
to define  q = G-1(fq) ∊ B. 

Let  a ∊ A.   Then  fq(a) = p(fS(a)(a)) ≠ fS(a)(a),  so  fq ≠ fS(a).   Applying G-1 to both sides yields  q ≠ S(a).   
Since this is true for any a ∊ A,  q ∉ S(A)  and hence  S(A) ⊂ B,  i.e. S is not a surjection. 

Therefore, no function from A to B is a surjection‡. ∎  

  

                                                           
* Note that I’m using the notation where |∙|  denotes the cardinality of a set. 
† A function  f: X → Y  is injective if it is one-to-one;  surjective if for every  y ∊ Y  there’s at least one  x ∊ X  such 
that  y = f(x);  and bijective if both are true (in which case it’s a one-to-one map between sets X and Y). 
‡ The argument also works if we restrict S to injective functions only, thus showing that no bijection from A to B 
exists.  This weaker version could conceivably be required to ensure fq ∈ F  for some A, B, F, and p, if that 
constraint can’t be met for the version shown… but otherwise there’s no advantage to making this restriction. 



If the above all sounds like gobbledygook, a couple of examples might clarify it! 

 

First, take the original example in the book, demonstrating that |A|<|set of subsets of A|, for any 
(arbitrary) set A.  Then B = {all subsets of A},  X = {0, 1},  and  F = XA = { all functions f: A → {0, 1} }.  
Now as discussed in the book, there’s a bijection between B and F:  For any  b ∊ B,  take  fb = G(b)  to 
be defined by   fb(a) = (1 if  a ∊ b  and 0 if not).   i.e. G(b) is just the membership function of the 
subset b (of A).  There’s only one possible choice for p, namely the function that switches 1 with 0, 
i.e.  p(1)=0  and  p(0)=1. 

Having established all this, we can now apply the “diagonal slash” argument, by constructing fq: 

fq(a) = p(fS(a)(a)) = (0 if  a ∊ S(a)  and 1 if not)  

And thus  q = G-1(fq) = {a: a ∉ S(a)},  which is the same subset of A as was described in the text 
(denoted there by “Q” instead).  Showing that there’s no  a ∊ A  for which  S(a) = q  completes the 
argument, both here and in the book. 

 

For the second example, take A = ℕ−0  and  B = (0,1) ⊂ ℝ.  ((0,1) is the subset of real numbers 
strictly between 0 and 1).  Any number in B can be represented as a sequence of decimal digits 
following a decimal point, and any sequence of digits can be considered as a function from n, the 
position in the sequence, to the digit at that (nth) position.  So take X = {0,...,9}.   For any  b ∊ B,  take  
fb = G(b)  to be the function in XA that corresponds (as just described) to b’s decimal expansion.  
However, there’s a little difficulty here of a kind we didn’t encounter in our last example.  We 
require G to be a bijection from B to F, but certain real numbers have two possible decimal 
expansions:  Any number who’s decimal expansion ends in an infinite sequence of 0’s can also be 
written using a decimal expansion that ends in an infinite sequence of 9’s, and visa-versa.  E.g.: 

0.123050000000…   ≡    0.123049999999… 

To overcome this problem, we simply choose to always use the first form, and disallow any decimal 
expansion that ends in an infinite sequence of 9’s.  We must also exclude the decimal sequence that 
contains all 0’s from consideration, since that just equals 0, and 0 is not an element of B.  Thus in this 
case  F ⊂ XA.   We’ll need to be sure that fq is in fact in F when we construct it, and an easy way to 
ensure we don’t “accidentally” produce one of these excluded sequences is to choose a p that never 
yields either 0 or 9.  There are many possibilities, but for example  p(x) = (7 if  x<5  and 2 otherwise)  
is as good a choice as any. 

To proceed with the “diagonal slash argument” in this case, we take any infinite list of real numbers 
in (0,1), such that S(a) yields the ath number in the list.  The function fq then corresponds to the 
decimal sequence constructed by taking the first digit of the (decimal expansion of) the first number 
in the list, then the second digit of the second number in the list, and so on, and applying p to each 
of these digits in turn to generate a new decimal expansion (in this case composed solely of 2’s and 
7’s) that differs by at least one digit from every number in the list – thus proving that no such list can 
contain every number in B!  …And thus that (since |(0,1)| ≡ C), the reals are not countable (C ≠ ℵ0). 


