
Exercise [16.05] 

An element ε of a finite field  n with the property that the sequence 1, ε, ε2, … , εn-2 enumerates all 
elements of the field except 0 (and repeats for higher powers, i.e. εn-1=1) is called a primitive element 
(or a generator of the multiplicative group of the field).  By expressing each nonzero element of the 
field as a power of ε, multiplication can be reduced to addition (of powers) modulo n-1.  It is known 
that all finite fields have at least one primitive element.  (I won’t prove it here). 

In the case of  8, n−1=7 is prime, and in that case, all elements except 0 and 1 are primitive.  To see 
this, either manually check that the sequences εn, (ε2)n, … , (ε6)n (for n=1 through 6 in each case) 
each enumerate the same set of elements (just in different orders), or else note that the numbers 2 
through 6 are all relatively prime to 7, and see my solution to [16.04]. 

To solve this exercise, though, we need to both add and multiply elements of  8, which means we 
need a complete specification of this field.  In the text, we are using  8 as a field derived from the 
vector space  2× 2× 2.  Addition in this space is defined as usual for vector addition; it is the 
multiplication rule that we must define to turn this space into a field… and component-wise 
multiplication doesn’t work.  (Consider, e.g.:  (0,0,1) × (1,0,0) which would give (0,0,0)). 

When we added an extra element i to the reals ℝ, we obtained ℂ, isomorphic to ℝ2 under addition.  
Similarly, if we extend the rational numbers ℚ by appending the cube root of 2 to them, we get the 
number system: 

{x(∛2)2 + y(∛2) + z:   x, y, z ∊ ℚ} 

isomorphic to ℚ3 under addition.  In both cases, addition and multiplication rules follow logically 
from the definition of the appended element.  So to find a “multiplication rule” for the vector space 
( p)n that turns it into the field  pn (where p must be prime), we simply extend  p by appending some 
element σ ∉  p with the property that σ, σ 2, … , σ n-1 are all linearly independent non-elements of  p, 
but where σ n is not.  i.e. where σ is a solution of some polynomial equation: σ n + an-1σ n-1 + … + a2σ 2 + a1σ + a0   =   0             ai ∊  p 

with no solution in  p, and where the LHS can’t be factorized into any smaller polynomials with 
coefficients in  p (i.e. the LHS is a polynomial that is irreducible over  p).  (Not being factorizable 
guarantees all powers of σ less than n are linearly independent).  Any such polynomial will do, and it 
is always possible to find one.  Then we can interpret a vector (x0, x1, … , xn-1) in ( p)n as the 
element: 

x0 + x1σ + … + xn-1σ n-1 

of our “extended” number system.  Addition and multiplication are defined accordingly.  Addition is 
just componentwise (vector) addition, and multiplication is just the same as normal polynomial 
multiplication, after which we get rid of higher powers of σ by repeated substitution of: σ n   =  − an-1σ n-1 − … − a2σ 2 − a1σ − a0 

  



Note that although there is only one finite field  pn for each choice of n and (prime) p, different 
choices of irreducible polynomial may result in different multiplication rules for the particular vector 
representation being used.  These different representations of  pn will all be isomorphic to each 
other, however.  For an example of what this means, swapping the positions of the first two 
components in each vector would also yield one such isomorphism, as a different multiplication rule 
would result. 

 

Now back to the particular problem at hand:  Defining a multiplication rule on ( 2)3 to turn it into  8.  
We need to find an order 3 irreducible polynomial over  2.  Given that the only possible coefficients 
are 0 and 1, this is very easy to do by inspection.  There are only two: σ 3 + σ + 1         and         σ 3 + σ 2 + 1 

(Obviously neither 0 nor 1 is a root of either of these, as they evaluate to 1 when σ is set to either 
value).  Using the first polynomial gives us the simplification rule:  σ 3 = σ + 1 

(Uniquely in  2 we have +1=−1, so there’s no minus signs when we rearrange the equation!) 

This rule allows us to define multiplication as follows: 

(a0, a1, a2) × (b0, b1, b2) 

  =  (a0b0) + (a0b1+a1b0)σ + (a1b1+a0b2+a2b0)σ 2 + (a1b2+a2b1)σ 3 + (a2b2)σ 4 

  =  (a0b0+a1b2+a2b1) + (a0b1+a1b0+a1b2+a2b1+a2b2)σ + (a1b1+a0b2+a2b0+a2b2)σ 2      (applying the rule) 

  =  (a0b0+a1b2+a2b1,   a2b2+a0b1+a1b0+a1b2+a2b1,   a1b1+a2b2+a0b2+a2b0) 

 

(Note that if we’d chosen the 2nd polynomial, we’d have gotten 

       (a0b0+a2b2+a1b2+a2b1,   a2b2+a0b1+a1b0,   a1b1+a2b2+a0b2+a2b0+a1b2+a2b1)       instead). 
 

Hence: 

(a0, a1, a2)2  =  (a0,   a2,   a1+a2) 

(a0, a1, a2)3  =  (a0+a1+a2+a1a2,   a1+a0a1+a0a2,   a2+a0a1) 

(a0, a1, a2)4  =  (a0,   a1+a2,   a1) 

(a0, a1, a2)5  =  (a0+a1+a2+a1a2,   a1+a2+a0a2,   a1+a0a1+a0a2) 

(a0, a1, a2)6  =  (a0+a1+a2+a1a2,   a2+a0a1,   a1+a2+a0a2) 

(a0, a1, a2)7  =  (a0+a1+a2+a0a1+a0a2+a1a2+a0a1a2,   0,   0) 

Note that  (a0, a1, a2)7  is  (0,0,0)  if  a0=a1=a2=0,  and  (1,0,0)  otherwise, as expected. 



Now, the problem asks us to prove that for each primitive element ε of  8, one of the following two 
identities holds: 

ε a+ε b+ε c = 0       or       ε 3a+ε 3b+ε 3c = 0 

where a, b, c are any three numbers pointed to by the magic disk’s arrows.  We can divide each 
equation by its leftmost term; then (w.l.o.g) taking a, b, c anticlockwise from the right of the figure 
as shown, we have the constants (b−a)=1, (c−a)=3 (mod 7) irrespective of the disk’s rotation, and 
(using the fact that ε 7=1) the identities thus become: 

1+ε +ε 3 = 0       or       1+ε 3+ε 2 = 0 

Using the vector representation of  8 just derived, these equations become: 

(A)        ((a1+1)(a2+1), a0(a1+a2), a0a1)   =   (0,0,0) 

or 

(B)        ((a1+1)(a2+1), (a0+1)(a1+a2), (a0+1)a1)   =   (0,0,0) 

 

By inspection, (A) holds for ε = (0,1,0), (0,0,1), or (0,1,1), and (B) holds for ε = (1,1,0), (1,0,1), or 
(1,1,1);  the other two elements of  8 in this representation are (0,0,0) and (1,0,0), but they are not 
primitive elements (they are 0 and 1 respectively).  Thus one of the two identities given holds for 
each primitive element of  8, as required, and the exercise is complete.  ∎ 

 

 


